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Synopsis

The dynamics of a population inhabiting a strongly heterogeneous environment are modelled by
diffusive logistic equations of the form u, = d Au + [m(x) — cu}u in Q X (0, =), where u represents the
population density, c, d >0 are constants describing the limiting effects of crowding and the diffusion
rate of the population, respectively, and m(x) describes the local growth rate of the population. If the
environment Q is bounded and is surrounded by uninhabitable regions, then u =0 on 3Q X (0, «).
The growth rate m(x) is positive on favourable habitats and negative on unfavourable ones. The
object of the analysis is to determine how the spatial arrangement of favourable and unfavourable
habitats affects the population being modelled. The models are shown to possess a unique, stable,
positive steady state (implying persistence for the population) provided 1/d > Af (m), where A{ (m) is
the principle positive eigenvalue for the problem —A¢ = Am(x)¢ in Q, ¢ =0 on 5Q. Analysis of how
Af(m) depends on m indicates that environments with favourable and unfavourable habitats closely
intermingled are worse for the population than those containing large regions of uniformly favourable
habitat. In the limit as the diffusion rate d | 0, the solutions tend toward the positive part of m(x)/c,
and if m is discontinuous develop interior tramsition layers. The analysis uses bifurcation and
continuation methods, the variational characterisation of eigenvalues, upper and lower solution
techniques, and singular perturbation theory.

1. Introduction

The subject of our investigation is a class of diffusive logistic equations which
model population dynamics in environments with strong spatial heterogeneity.
We represent that spatial heterogeneity by taking the coefficient describing the
intrinsic rate of growth in the population at low densities to be positive in some
regions and negative in others. The object of our investigation is to determine
how variations in the spatial distribution of these favourable and unfavourable
habitats affect the predictions of the model. We are especially interested in
comparing situations where the total sizes of the favourable and unfavourable
regions are fixed but the spatial arrangement of those regions is allowed to vary.
The fundamental biological question that we address, and partially answer, is:
which arrangements are best for the population, and which are worst? We also
provide a framework for the analysis of related problems arising in conservation
and pest control. Our approach is to observe that whether a model predicts
persistence or extinction for the population it describes is determined by the
nature of its steady states, and then to analyse those steady states.

To perform the basic qualitative analysis, we use methods from multiparameter
bifurcation theory, singular perturbation theory, and partial differential ‘equa-
tions. As is frequently the case, we find that the heart of the problem lies in
questions of linear spectral theory. It turns out that most of the quantitative and
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many of the qualitative aspects of the analysis depend crucially on the size of the
first positive eigenvalue for a linear elliptic problem with a sign indefinite weight.
Therefore our efforts have largely been devoted to understanding how the
distribution of regions of positivity and negativity for the weight function affects
that eigenvalue, and most of our new theoretical results deal with such questions.
Our analysis shows that the models we consider predict persistence for a
population if its diffusion rate is below a certain critical value depending on the
coefficient describing the growth rate, and extinction if the diffusion rate is above
that value. The way that the critical value depends on the growth rate coefficient
seems to be rather subtle and complicated; but roughly, the critical value will
tend to be smaller in situations where favourable and unfavourable habitats are
closely intermingled, and larger when the favourable region consists of a
relatively small number of relatively large isolated components.
The models we analyse most completely are of the form

w=dAu+Im(x)—culu in QX (0, x),
u(x, 0)=uy(x)=0 for xe, (1.1)
u(x,)=0 on 92 x (0, »),

where Q< R"” is a bounded domain, ¢ and d are positive constants, and
m(x) € L™(Q) is positive on a set of positive measure, but generally not on all of
Q. We discuss our motivation and some of the modelling process leading to (1.1)
later, but the basic interpretation of the various terms in (1.1) is that u represents
the population density of a species inhabiting a region € which is surrounded by a
completely inhospitable region where the population density is zero. ‘Lhe
members of the population are assumed to move about € via a “random walk™
process, which is modelled by the diffusive term d A; here d represents the
diffusion rate, so for larger values of d the population spreads more rapidly than
for smaller values of d. The local rate of change in the population density is
described by the density dependent term m(x) — cu. In this term, m(x) describes
the rate at which the population would grow or decline at the location x in the
absence of crowding or limitations on the availability of resources. The sign of
m(x) will be positive on favourable habitats and negative on unfavourable ones.
The term —cu describes the effects of crowding on the growth rate of the
population; these effects are assumed to be independent of those determining the
growth rate at low densities. The size of the constant ¢ describes the strength of the
crowding effects. Many of our results are still valid for somewhat more general
nonlinearities which behave qualitatively like [m(x)—culu. We describe the
appropriate class of nonlinearities at the end of Section 2.

In some cases a more realistic assumption about the region Q would be that it
is surrounded by a region that is unable to sustain a population but which is not
so inhospitable that the population density outside Q is driven to zero
immediately. That modelling assumption would lead to boundary conditions of the
third or Robin type, namely yu + du/3n =00%Q, where y >0 is a constant and
du/dn is the outer normal derivative of u; see, for example, [3]. We do not
consider that case here for several reasons. Firstly, we are primarily interested in
the effects of variations of the habitat inside Q rather than boundary effects, and
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we expect that any type of dissipative boundary conditions should give qualita-
tively similar results. Secondly, our choice of Dirichlet boundary conditions
allows us to use various known mathematical techniques rather than spending
time on technicalities which are really tangential to the main thrust of our work.
We shall consider the question of more general boundary conditions elsewhere.

To study (1.1), we show that it admits a unique positive steady state which is a
global attractor for nonnegative nontrivial solutions, provided that d is sufficiently
. small, so that the population persists, and that the solution u =0 is a global
attractor for nonnegative solutions if d is large, so that the population tends to
extinction. The steady state problem

—d Au=m(x)u — cu* in Q, 12
u=0on 3Q (1-2)

may be considered from the viewpoint of bifurcation theory with respect to one
or more parameters; we use the single parameter d and the pair (d, m(x)) and
apply results of Rabinowitz [40] and Alexander and Antman [1], respectively, to
analyse the parameter dependence of (1.2). We find (among other things) that
(1.2) has a unique positive solution which is an attractor for nonnegative,
nontrivial solutions of (1.1) provided that d < 1/A{(m), and no positive solutions
if d >1/A{(m), where A{(m) is the smallest positive eigenvalue for the problem

—A¢p=Am(x)¢ in Q,
¢ =0 on 9Q.

That the problem (1.3) has such an eigenvalue even though m(x) may change sign
in Q follows from results of Manes and Micheletti [36], among others. Eigen-
value problems with indefinite weights have been widely studied; see
[4,6,9,13,16,17, 21, 30, 32, 36, 39]. However, the results are mostly either
qualitative in nature or not sharp enough for our purposes, so we have devoted
most of our analytic efforts to deciding how variations in m(x) affect A; (m).

Our main results regarding the dependence of A; (/) on m are given in Section
3. In addition to their relevance in the present applied setting, they are also of
some independent mathematical interest. The fundamental result is Theorem 3.1.
It allows us to distinguish classes of growth rates m(x) within which any given
species can be driven to extinction by an appropriate choice of m from those
classes for which any species with a sufficiently low diffusion rate will persist,
independently of how m is chosen within the class. The theorem states that for a

(1.3)

sequence of weights {m;(x)} to have a sequence of smallest positive eigenvalues. .. .

{Af (m;)} with lim A{ (m;) = o, it is necessary and sufficient that lim sup [o my =
Jroo Jroo

0 for all ¢ € L}(Q) with ¢ =0 almost everywhere. If we apply the result with
=1, it follows that if a class / of weights satisfies [om Zm>0 for all m in
the class, then the set of associated principal eigenvalues {1 (m)} is bounded.
Thus, if m is constrained to lie in such a class and if d <1/sup {A(m): m € M},
then no matter how m e # is chosen, (1.1) admits a globally attracting positive
steady state and hence implies persistence for the population it models. In
addition to Theorem 3.1, we obtain some fairly sharp estimates for Af(m),
especially in the case of one space dimension. In Theorem 3.5 we show that if
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Q=(0, ), E cQ is measurable with |E|>[Q\E|, and m = x5 — Xo\, then we
have

MO — xaw) E7*/[|E| - |Q\E|P.

Theorem 3.6 gives some new lower bounds for A(m), which imply that for
Q= (0, ) we have A{(sin (jx))—> o with order j as j— . In principle, it should
be possible to extract such information from the estimates of Gossez and Lami
Dozo [21], but applying the methods of [21] in practice seems to present some
difficulties. Finally, we show in Theorem 3.9 that if we restrict m to a class
M={me L"(Q): fam=my and —m,=m(x)=m,}, where mq, m,, and m, are
positive constants, then there exists a weight m = m,xg — myXox for some subset
E < Q such that m € A and A{ (m) = inf {1} (m): m € M}. If we view m as control
for A{(m), we may interpret the result as saying that there exists an optimal
control for minimising A{(m) and that the control may be assumed to be of
“bang-bang” type.

In Section 4 we obtain various bounds and asymptotic results for solutions to
(1.2) and (1.1). We give a bound on the L' norm for a solution of (1.2) when
d <1/Af(m); since the solution represents a population density, the L' norm
measures the total size of the population. We then use some results from singular
perturbation theory, especially as treated by DeSanti [14] to give some fairly mild
conditions under which the positive solution to (1.2) tends toward m,, the
positive part of m, as d | 0. If m is the difference of two characteristic functions,
this produces interior transition layers. We also estimate the rate of decline
toward extinction of a population modelled by (1.1) when d > 1/A] (m).

IXT A mmems madrrmes bm tha Rialasmianl anmocidaratiane wthinh aandaslia tha mndal mivran
VYT BAU Y ALwLiA MU VARG A AN A weeh e AAMa e e a3 mam—a - bbbl

by (1.1) and which follow from the model’s predictions. Our interest in models
such as (1.1) is motivated by two types of ecological questions, each of which is in
a sense the converse of the other. The first can be called the “roach-proofing”
problem: suppose that we wish to exterminate some pest population, but only
have enough pesticide to treat some fraction of the infested region. How should
the pesticide be distributed over the region to have the greatest negative impact
on the pest population? Conversely, if some desirable species inhabits a region in
which the environment is being polluted or destroyed and we can only preserve
part of the environment as a refuge, how should the refuge be arranged
geographically to best protect and maintain the population? Such questions have
been widely studied, but not usually via the type of differential equations models
which have been used so often and effectively in other areas of mathematical
ecology. Some work in that direction has been done by Aronson, Ludwig and
Weinberger [3], but they consider only regions which are strips, and assume that
within a given strip the growth rate is a constant. The corresponding case of
spatially homogeneous but temporally varying environments has been studied
from that viewpoint by T. Hallam and his co-workers in [22-28], and our
investigations were inspired partly by that work. Another source of our
inspiration lies in some questions posed by L. Gross on how the spatial
distribution of susceptible and resistant strains of crop plants would affect the
crop yield in the presence of a pathogenic organism. Our model (1.1) could be
viewed as a simplified formulation of the population dynamics of the pathogen in
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such a situation. Our results provide a starting point and framework for the
application of ideas from the theory of differential equations to the spatially
heterogeneous situation. Ultimately, it would be desirable to allow both spatial
and temporal variations in the environment, but that situation presents some
serious technical difficulties requiring further analysis.

Logistic equations have long been used as models in population dynamics; their
use dates back at least to the work of Verhulst {44, 45] in the mid-nineteenth
century. Recently there has been considerable interest in models which allow for
spatial variations in population density and represent the movements of members
of the population by the type of random walks occurring in Brownian motion.
These models typically have the form

u,=d Au + f(u)u, (1.4)

where f(u) is typically positive for small positive values of © and negative for
larger ones. The classical Verhulst dynamics use f(u) = r — cu with r denoting the
growth rate at low density and K =r/c denoting the carrying capacity of the
environment. Detailed discussions of the development and use of models such as
ordinary differential equations of logistic type and reaction—diffusion equations of
the form (1.4) are given by Hallam and Levin respectively in [22] and [34];
models such as (1.4) are also discussed in [15, 43], among many other references.
The extent to which mathematical models in biology are realistic depictions of
reality has frequently been a topic of debate. That is not surprising; life is
complicated, and any model simple enough to analyse at all must necessarily be
limited in its scope. However, models such as (1.4) are widely regarded as being
at least qualitatively correct descriptions of some species in some situations. In
[21-27], Hallam et al. consider models for population dynamics in stressed
environments which include as a special case

u, = (r(t) — cu)u. (1.5)

Our model (1.1) combines features of (1.4) and (1.5). Since we are primarily
concerned with the effects of spatial variations in the growth rate m(x), we have
chosen to use the simplest reasonable representations for diffusion and the effects
of crowding, and have assumed that the diffusion rate and the strength of
crowding effects are independent of spatial variations in the basic growth rate.
(Most of the results in Sections 2 and 3 of this paper can be extended to more
general types of diffusion and dynamics.)

As noted, the basic ecological content of our results is that for a species with a
given rate of diffusion, the worst environments are those where favourable and
unfavourable ‘regions are closely intermingled, producing “cancellation” effects,
and the best are those where the favourable regions are relatively large and few in
number. This conclusion has significant implications for the design of wildlife
refuges. It suggests that a small number of large preserves will provide better
protection for a species modelled by (1.1) than many small ones, and if the
preserves are too small and too closely intermingled with regions where the
environment has been damaged, they may not effectively protect the species from
extinction. Similar conclusions have been drawn by other investigators using
other methods; for example in the work of Newmark [38] or in some of the
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discussions in the book of Frankel and Soulé [19]. Newmark uses the theory of
island biogeography, which was developed by MacArthur and Wilson [35] and is
described by Levin [35] as being a major alternative to reaction—diffusion models
for studying the effects of the geometry of the habitat on the dynamics of. a
population. One advantage of our approach is that it allows us to concentrate on
a single species; island biogeography describes the relationship between the size
of a region and the number of different species it will support. Since our models
are for a population rather than a community, they operate at one level of
complexity lower than does island biogeography. It should be noted that there are
situations in which neither island biogeography nor our models give an appropri-
ate viewpoint for refuge design; for example, species which are adapted to
transitional habitats rather than habitats near equilibrium seem to be difficult to
model from these viewpoints. (We remark that our approach does give
information even if a population is not near an equilibrium, provided that the
environment is essentially constant. That is because the nature of the set of
possible equilibria cficctively determines the qualitative aspecis of ihe dynamics
of the model.) Although models such as (1.1) may not be universally applicable,
they are well within the mainstream of current approaches to mathematical
ecology, and questions of conservation are important enough that providing a
new perspective for their study seems to us a worthy endeavour.

There are various possible extensions and refinements to our work which could
broaden its range of applicability, and various connections with other mathemati-
cal problems of current interest. One obvious type of extension would be to
consider environments which vary in both time and space and species whose
wuvemculs dre nUL modeiled accurately Dy Brownian motion. A particular
example would be a population subject to drift, due either to effects of winds and
currents or to the response of the population to chemical gradients in the
environment. Examining the types of models discussed in [22] and [34] we find
that a rather wide range of situations would be modelled by equations of the form

u,=V.(d(x,t, u) Vu) +b(x, t, u). Vu + [m(x, t) = f(x, t, u)lug(u), (1.6)

where d =0, [f(x, t, u)|=f, |u| with f(x,t, u) positive for u large, and g is
positive and smooth for positive u with g(0) = 1. Unfortunately such models are
too general to be amenable to our techniques. Our results depend on the analysis
of steady states, and use the variation charactetisation of eigenvalues of the
linearisation of the operator on the right-hand side of (1.1). Unless the right-hand
side of (1.6) is constant or at least periodic in ¢, the idea of a steady state does not
make too much sense. By using results of Beltramo and Hess [4] or Hess and
Kato [32] we could extend the results of Section 2 to problems of the form

w,=V.d(x, t) Vu+b(x, t). Vu+[m(x, £) — culu, %))

with d, 5, and m either constant or periodic in ¢, d positive, and all coefficients
Hoélder continuous. We cannot extend the results of Section 3 to that case
because they use the variational formulation for eigenvalues of a self-adjoint
elliptic operator. Also, the variational approach allows us to consider m L*(Q);
it is an open question whether the results of Hess and Kato for the nonself-
adjoint case extend to weights that are not continuous. (Nussbaum [39] has a
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version of the results in [32] under weakened regularity assumptions but still
requires m to be continuous.) Hence, one natural class of questions is that of
extending our results to nonselfadjoint operators. (A case of particular applied
interest would be where the terms d and b are related to m. Such a situation
would arise if the negative regions for m represented areas polluted by a toxin
which the population can sense or which affects the diffusion rate of the
population.) Another natural direction to take in the analysis is to try to view m
not simply as a parameter, as we do, but as a control (in the sense of control
theory), and ask to what extent the system is controllable, whether or not there
are optimal controls and if so whether a “bang-bang” principle applies, and so
on. Theorems 3.1 and 3.9 provide some information on these questions, but much
remains to be done. Yet another direction would be to consider more than one
species. Models for communities are discussed in [8,10,22,34,43] and the
references therein. Analysing such models in our context would require extending
the results of Section 3 to systems with indefinite weights. Many of the results
used in Section 2 have been extended to certain types of linear systems with
indefinite weights by the first co-author in joint research with K. Schmitt [9] (see
also [30]), but much remains to be done. (In fact, the limitations of the results in
[8] are due largely to limitations of existing spectral theory for linear systems.)

As a final introductory remark, we note that eigenvalue problems with
indefinite weights also arise in population genetics, and that models of the form
u,=—d Au + m(x)f (1), where m can change sign, have been studied from that
viewpoint in [18,42]. The results are somewhat related to ours but differ
considerably in detail and interpretation; we mention them mostly for
completeness.

2. A qualitative overview

In this section, we describe the basic existence, uniqueness, and stability
properties of the positive steady-state solutions to (1.1). To this end, consider

—d Au=m(x)u —cu* inQ, }

u=0 on 99Q. 21

We assume m(x) e L™(Q2) and that ¢ is a positive constant. Let A denote the
inverse of —A subject to zero Dirichlet boundary data. Then A is a continuous
map from L[F(Q) into W*?(Q)NW§P(RQ), p € (1, ®), and W>#(Q) N WP(Q)
embeds compactly into C3**(Q), 0< a <1, for sufficiently large p. (See [19], for
example.) Consequently, (2.1) is equivalent to an equation of the form

e =A(Le + H(e)), (2.2)

where e € C3(Q), L: CY(Q—> CYQ) is compact and linear, H: C3(Q)— C3(Q) is
completely continuous with lim (H(e)/|le]]) =0, and A =1/d. (We are thinking of
e—0

e=u.) As aresult, (2.1) is amenable to description via the methods of bifurcation
theory.
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Therefore, let us now consider the linearisation about 0 of (2.1), namely
—d Az=m(x)z in Q, }
z=0 on 0%2.

If the sets Q™ = {x € Q: m(x) >0} and Q™ = {x € Q: m(x) <0} both have positive
measure, the eigenvalue problem
—Az=2Am(x)z inQ, }
z=0 on 99,

2.3)

(2.4)

has a doubly infinite sequence of eigenvalues

...élg’él{él{<0<l;“§l§"él§§-. s
with variational characterisations
1 NI - AN 1
—— = S i i< —V =1 uek:
A SRR E e T

1 N a 2
E=igfsup {Lmuzz .=Z1jg (ﬁ) =1, u GE,},

where F, varies over all n-dimensional subspaces of Hy(Q) (see [13]). Moreover,
the theorem of Manes and Micheletti [36] guarantees that A is algebraically
simple viewed as a characteristic value of e = AA(me) and that the eigenspace
corresponding to A is (¢), where ¢ € C3**(R) is such that ¢(x)>0 in Q and

AL IA LN A AN T A Aisiae M g i 1
Ul‘U[UIl\.&} NV WAL WA AL uuux:&v;;, af e C L (Q) '_S S‘_”_‘h ‘:h?t m(v) Sm(v) a]mngf

everywhere in Q, then Af(m)ZAy (). (If the inequality is strict on a set of
positive measure, then A{ (m) > A{ (112).)

The Rabinowitz bifurcation theorem [40] may now be employed to assert the
existence of an unbounded continuum % of positive solutions to

—Au=Mm(x)u —cu®) inQ, }
u=0 on 912,

in RX CYQ) emanating from (A7 (m), 0). In fact, all such solutions (A, u) are
such that u € C}*%(Q), u(x)>0 in Q, and du/3n <0 on 3R (i.e. u is strictly
positive).

To see that such is the case, recall from the Rabinowitz theory that the
simplicity of A{(m) guarantees that the continuum of solutions emanating from
(A (m), 0) in R X C3(Q) can be expressed as the union of two subcontinua which
intersect at (A} (m), 0). Moreover, these subcontinua either intersect outside a
small neighbourhood of (Af(m),0) or both satisfy the global Rabinowitz
alternatives. Since (2.2) may be viewed as an equation in CHQ) with main-
tenance of the compactness properties of L and H, the Crandall-Rabinowitz
local bifurcation theorem [12] and the strict positivity of ¢ from Manes—
Micheletti distinguish these subcontinua locally as being the strictly positive and
the strictly negative solutions to (2.5). The strong maximum principle for weak
solutions ([20, Theorem 8.19]) guarantees global preservation of strict positivity
and of strict negativity, and that (2.5) has no nontrivial solutions for A=0.

2.5)
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Consequently, the subcontinua intersect only at (A;(m), 0), and the subcon-
tinuum of positive solutions satisfies the global Rabinowitz’ alternatives. Since
there are no positive eigenvalues of (2.4) other than A{(m) which admit a positive
eigenfunction, the continuum of positive solutions must be unbounded.

Notice that if

—Au = Am(x) — cu)u,
then A = Af (m(x) — cu) > A (m(x)). Consequently, the projection of € into R is
contained in (AT (m(x)), =).
Suppose now that [= (ess sup m+(x)> / ¢>0 and that for some (4, u)e
Q

%, u(xo)>1 for some x,€Q. Let Q' be the connected component of {xe
Q: u(x) > I} which contains x,. Then u(x)>!on Q' and u(x) =/ on 3Q'. Hence

A(u—1)=Au(cu —m(x)) in Q’,
u—I=0 on 3"
The maximum principle implies that ¥ —/=0 in @, a contradiction. Conse-
quently, for any (4, u) lying on €, |[u]l.= (ess S_2sup m*(x)) / ¢. It follows readily

that the image of the projection of € into R is (Af (m), ).

In fact, € is actually an arc. To see that this is so, suppose that for some
A>2}(m), (2.5) has positive solutions u, and u,. Then v=wu, is a positive
solution to

—Av + AMeu; —m(x))v=ov in Q,
v=0 on 9%,
with o =0, while w = u; — u, solves ,
—Aw + Mc(uy +u) —m(x))w=aw in Q,
w=0 on 9Q,
with &=0. Since v is positive, 0 is -the principal eigenvalue of the operator
—A + A(cu; —m(x)) on Q, subject to zero Dirichlet boundary conditions. Since
u,>0, all the eigenvalues of —A + A(c(u; + up) —m(x)) on L, subject to zero
Dirichlet boundary data, must be positive, a contradiction. Hence € is an arc.
Moreover, the points on 4 are globally asymptotically stable when considered
as steady-state solutions to (1.1). To see the local asymptotic stability, let
Ae(Af(m), ). As in [30], the principle of linearised stability obtains and

consequently we need only show that if F(w) = —Aw — Am(x)w + Acw?, then the
first eigenvalue of

F'(u)p=p¢ inQ, } 2.6)

¢=0 on 8%,
is positive, where (4, u) € €. Now (2.6) becomes
—A¢ — Am(x)¢ +2Acup = u¢ in Q,
¢=0 on 9Q.
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Since v = u >0 solves
—Av—Am(x)v+Acuv =0 in Q,
v=0 on 9Q,

and 2Acu — Am(x) > Acu — Am(x), u >0, establishing the result.

To infer that the unique positive solution to (2.5) is in fact the global attractor
for nontrivial negative initial data in W»*(Q), we observe that the nonlinearity is
such that the maximum principle can be applied to compare any nonnegative
solution to (1.1) with a sufficiently large constant. Consequently, as in [29] or
[43], orbits exist for all time and are bounded. We may now view (1.1) as a
dynamical system on W*?(Q) with

1= [t mr+:8]
| @)= [3IVoP-m@ T+ e
as a Lyapunov function.

Then, as in [29, Section 5.3], the w-limit set for (1.1) consists of equilibrium
points. The only nonnegative solutions to (2.5) are u and 0. Since A € (Af (m), ),
it follows from the proof of Proposition 3 in [32] and the principle of linearised
stability as in [31] that O is unstable. Consequently, the global asymptotic stability
follows from the local asymptotic stability. We should note that in case
A <A{(m), the trivial solution is the only nonnegative solution to (2.5) and hence
is globally asymptotically stable as a solution to (1.1) for nonnegative initial data
in W*(Q). (Since any initial data in L*(Q) will produce a local solution which is
in W%*(Q) for any small, positive value for ¢, and the equation is autonomous,
thic ramnirement imnoses no teal restriction )

Summarising, we have the following result.

TaeoreM 2.1. Let m e L™(Q) be such that {x € Q: m(x)>0} has positive
measure. Let Af(m)>0 be the unique eigenvalue for (2.4) admitting a strictly
positive eigenfunction in C3**(Q). Then (2.1) has a unique strictly positive (i.e.
u(x)>0 in Q and (3u/3n)(x)<0 on Q) solution in C**(Q) for all de
O, [Af (m)]™Y). Moreover, for each fixed de (0, [Af(m)]™Y), this solution is
globally asymptotically stable when viewed as a steady-state solution to (1.1).

It is also instructive to view (2.1) as a multiparameter nonlinear eigenvalue

problem with (d, m) e R X L™(Q2) as parameters. (Compare, for example, [1].)
To this end, we have the following result.

TueOREM 2.2. Let D = {(d, m) e R* X L™(Q): (2.1) has a positive solution}.
Then the map (d, m)—> u(d, m) is a differentiable map from D into C3**(Q).

Proof. Let G: W*P(Q)NWHP(Q) X [RX L*(Q)]— LP(Q) be given by
G(u, d, m)=—d Au—m(x)u + cu®. Suppose that (do, mo) e R¥ X L*(Q) and
uge C§*%(Q) are such that G(uo, do, my) =0 and u, is strictly positive.
(8G/3u)(uo, dy, my) is invertible by standard elliptic theory [20] provided 0 is not
an eigenvalue of (8G/3u)(uy, dy, m). Since (8G/8u)(uo, do, mo)w = —dy Aw —
mo(x)w + 2cuyw, the relevant eigenvalue problem is o

~dy Aw — mg(x)w + 2cuew = uw in Q,
w=0  on Q.
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As in the proof of the stability assertion for Theorem 2.1, u > 0. Consequently,
the result follows from the implicit function theorem and the fact that W>7(Q) N
W§P(Q) embeds into C3**(Q) [20]. O

The results of this section extend to more general equations than (1.1), (2.1). If
we consider the problem
u=dAu+f(x, u)u in Qx (0, ),
u(x, 0) =uy(x)Z0 on Q, 2.7
u=0 on 9Q x (0, ),

and the corresponding steady-state problem

O=dAu+f(x,)u inQ,

u=0 on 99, 2-8)
then applying the methods of this section yields the following result, which we
state without proof. ‘

THEOREM 2.3. Suppose that f: Q X R—> R is a measurable function satisfying the
following conditions: '

() f(x, @) e L™(Q) with ||f(x, @)|-=K(r) for each ae[~-r,r], where
K: [0, ©)— R* is some nondecreasing function;

(ii) (8f/3a)(x, @) is a measurable function on Q X R which is continuous in «
for any fixed x € Q and which belongs to L™(Q) for each fixed o when
viewed as a function of x, with ||(3f | da)(x, a)||-= K (r) for all « € [—r, 1],
where again K: [0, ©)— R* is nondecreasing;

(i) (8f/0a)(x, ®) =0 for « =0, with strict inequality for a:>0;

(iv) f(x, @)=0 for a=1>0, for all x € Q;

(v) {x:f(x, 0)>0} has positive measure.

Then (2.8) has a unique strictly positive solution in C}**(Q) for all de
O, [Af (f(x, 0)]Y). Moreover, for each fixed d e (0, [Af (f(x, 0))]™Y), this solution
is globally asymptotically stable when viewed as a steady-state solution to (2.7).

Finally, we conclude this section with two remarks. The first concerns the
choice of C)(Q) as the underlying Banach space in the proof of Theorem 2.1. We

use the fact that [jull.= (ess sup m*(x)) / ¢ for all positive solutions to (2.5) in
: xef2

conjunction with the fact that the continuum % of positive solutions to (2.5) is
unbounded to conclude that € is unbounded in A; i.e. there is (4, u) € € for all
A> A{(m). This argument is not possible in general if the C° norm is replaced by
the C* or C' norm. Indeed uniform C® or C* boundedness implies precompact-
ness in the C° topology by the Ascoli-Arzela theorem. However, when m is
discontinuous, it is frequently the case that u(1) tends pointwise to a discon-
tinuous function as A— +oo(d— 0%), as we demonstrate using singular perturba-
tion techniques in Section 4.

The second of the two remarks is a simple observation regarding scaling of the
solutions. Namely, if u e Ci**(Q) is a strictly positive solution of (2.1), then
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U = cu/||m|].. is a strictly positive solution of
d
-—( : )Aw=——m££)—w—w2 in Q,
il Il
w=0 on 9%.
Consequently, there is no loss of generality in assuming for the remainder of the

paper that ||m||l.=1 and c¢=1. It also follows that if y is a positive constant,
AL (ym) = AL (m)/y.

3. The location and behaviour of eigenvalues

To apply the results of the last section in a meaningful way to the problem of
analysing the effects of distribution of good and bad environmental patches on a
population, it is crucial to obtain estimates of the first eigenvalue of the problem

—A¢p =Am(x)¢ inQ,
¢=0 on 9Q. } -1

We shall assume throughout this section that m(x) e L™(2) with [im]l.=1 and
m(x)>0 on a set of positive measure. As noted, under these conditions the
problem (3.1) has a principal positive eigenvalue Ay(m). As in the case of
positive, regular weights, Af(m) is monotone in m in the sense that if m;=m,
then A}(m,)=A{(m,). However, this type of qualitative information is not
sufficient for our purposes, since we wish to compare weight functions which may
pot be ordered in such a way. Specifically, we are interested in the basic
biological question: given a class of weights reflecting some natural restrictions on
the environment, such as fixed sizes for the favourable and unfavourable regions,
which sorts of weights describe the best environments for the population, and
which sorts describe the worst? More generally, how does the distribution (as
opposed to size) of the favourable and unfavourable regions affect the popula-
tion? These biological questions lead to mathematical ones such as how
M (e — xone) varies with E c Q if the measure of E is fixed. There are various
results in the literature giving estimates for some or all of the eigenvalues of (3.1)
(e.g. [16,21,39]), but those estimates do not immediately yield the type of
information we need. Hence we shall derive some properties and estimates of
Af(m). Our first result will give a criterion for deciding if a given class of
admissible weights m contains a sequence {m;} such that A;(m;)—> as j— . If
such a sequence {m;} exists, the results of the previous section show that for fixed
diffusion coefficient d, we may force the nonexistence of positive steady states for
(1.1), and hence the extinction of the population which (1.1) describes, by
choosing m = m; for j sufficiently large. On the other hand, if for all m in a class
of admissible weights we have A{(m)=A,, then if d <1/A, the population will
 persist, no matter how we choose m in the class. Hence, the distinction between
the two cases is fundamental for our application. Once we have established the
basic qualitative result, we discuss the special case where n =1, Q is an interval
and |m(x)| =1 almost everywhere, and obtain some rather specific quantitative
estimates. Finally, we return to the general setting and discuss some approaches
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to estimating A; (), and show that within some biologically reasonable classes of
weights, there exist “most favourable™ choices.

A basis result for our analysis is a version of the variational characterisation of
Af(m) given in [13, 36] and stated in Section 2:

AH(m) = in { f Vo / f me%: ¢ € WA(Q), j m¢2>0}. (3.2)
Q Q Q
Our basic result is as follows.

TueoreM 3.1. Suppose that for j=1,2,...,m;e L™(2) with ||m;||l.=1 and
my(x)>0 on a set of positive measure. To have Af(m;)—>® as j—>w, it is
necessary and sufficient that

lim sup | myyp =0 for all y € LY(Q) with y Z0 a.e. (3.3)
= Q
Proof. To show the sufficiency of (3.3) we use an argument suggested by our
colleague Alan Lazer [33]. Suppose that (3.3) holds but Af(m;)—p . Choose a
subsequence of {Ay(m;)} which is bounded and reindex that bounded sub-
sequence as Af (my). Let ¢, € W5*(Q) be the eigenfunction of (3.1) correspond-
ing to Af(m,), normalised so that [ [V¢,|*=1. We have

1= [ Vol =m0 | mugh (3.4)

The normalisation of ¢, implies that the sequence {¢;} is uniformly bounded in
WH*Q), and the Sobolev embedding theorem then implies that {¢} is
uniformly bounded and has a convergent subsequence in L*(Q) since W§H*(RQ)
embeds compactly in L?(Q). Again reindexing, let us denote that subsequence as
{¢,}, with ¢,—> ¢ in L*(Q) as [— . We must, by our choice of subsequences,
have Af(m,) bounded as [— . However, (3.4) yields

1= 41 m)| mi9? = ¢+ Ao | mig? (35)

As |-, the first integral in (3.5) goes to zero since ||my||l.=1, ||@]l; is
bounded, and ¢,— ¢ in L*(Q). The second integral has a nonpositive lim sup as
I— = by (3.3), so taking the lim sup as [—> « in (3.5) yields 1=0, a contradiction.
Hence, if (3.3) holds we must have A{ (m;)—> = as j— .

To see the necessity of (3.3), suppose that for some y e L'(Q) with 9 =0

almost everywhere, we have limsup [omp =2£,>0. Then we must have a
j-—-»ec

subsequence {my} for which [o m,p Z g5> 0. Also, Vy is well defined in L*(Q).
Thus, for any ¢ >0, there exists ¢ € Cg(Q) such that IV — ¢ll.<e, so

UQ m(y — ¢%)

= el jg (Vo — DV + o))

SIVy -l VY + ¢l
=e |yl +e).
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Choosing € so that £(2{|y]|1? + €) = &,/2 and making the corresponding choice of
¢, we have '

fmk¢2 = j mk'l/«'"*' f mk(qf)2 bt 'lll) ; 80/2 > O,
so by (3.2),

M) [ o2/ [ mg?s e[ 190F (3.6)

Since ¢ does not depend on k, (3.6) provides an upper bound for A (m;), and
hence it is impossible to have A{ (m;)—> .

Remarks 3.2. If we let ¥ =1 in (3.3) we see that to have A; (m;)— « we must
have lim sup [ m; =0; so if we impose a condition which implies [qm =m;>0
(e.g. fameZmo+ fom_, or m =Yg — xor With |[E|Z m + [Q\E|) then the set
of principal eigenvalues for weights m in that class will be bounded above.

Since the characterisation in [36] for A;(m) corresponding to (3.2) implies that
A7 (m) = —A{(—m), we have A](m;)—> —c as j—> o if and only if lim inf [ m;y =

o

0 for 1 e LY(Q) with 9 =0 almost everywhere. Then by writing ¢ = y* — ¢~
with ™, ¥~ nonnegative almost everywhere, we obtain from Theorem 3.1 the
following.

COROLLARY 3.3. Suppose that for j=1,2, ..., m;e L™(Q) with ||m;]|l.=1 and
with the sets where m; >0 and m; <0 both having positive measure for each j. A
necessary and sufficient condition for |A7(m;)|—> = as j—> = is that

f map—>0 as j—> o for any ¢ e LY(Q). 3.7
Q

Note that (3.7) says the weights m; must satisfy a type of Riemann-Lebesgue
lemma; that will be the case, for example, for Q = (0, 1) and m;(x) = sin (a;x)
with a;—® as j—> . In that sense, Theorem 3.1 and Corollary 3.3 assert that
having Af(m) large is roughly equivalent to having m negative or highly
oscillatory on Q, and that having |A{(m)| both large requires m to be near zero or
highly oscillatory. Further, if # c {m € L*(Q): [o@ m 2 my>0, |m| =1}, for some
constant m,, then there must exist a constant Ay <o such that A{(m)= A, for
me M, since otherwise we could choose a sequence m;e#f such that

lim sup { m; >0 but A{(m;)—>, in contradiction to Theorem 3.1. On the other
]-—)m

hand, Theorem 3.1 shows that in some classes of weights there is none reflecting
an environment that is “worst” for the population. For example, if N=1, Q=
(0, #), and = {sin ax: >0}, then for each m e ., A{(m) is finite, but
SUP,eu AT (M) =, so the supremum is never attained. Thus, Theorem 3.1 is
of fundamental importance for two reasons: it provides insight into the qualitative
aspects of the dependence of A{ () on m, and it shows that the question “which
environment in a given class is worst?”” will not always have an answer.

We now turn to the case where N =1 and take Q = (a, b). In this situation we
can make the conclusions of Theorem 3.1 quantitatively precise. We shall have
need of the following lemma. (Compare [13], Proposition 1.12B.)
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Lemma 3.4. Suppose that {m,},-, < L™(a, b) and m € L*(a, b) are such that the
sets Q,, = {x € Q: m,(x) >0} and Q = {x € Q: m(x) > 0} all have positive measure.
Suppose furthermore that lim [5|m, —m|=0 (i.e. that m,— m in the topology of

L¥(a, b) as n—> ). Then A} (m,)—> A{ (m) as n— .
1 b
Proof. By the definition of weak solutions in Wé‘z(a, b), F—(——-——-—)-= j m,¢? if
—¢hn = A{ (m,)m,¢, and j (9, =1 Sumlarly, I ma¢?, where —¢" =

Af(m)m¢ and f (¢")*=1. Also, since j (¢')2=f (¢.)*=1, ¢ and ¢, are
absolutely continuous and satisfy max {||¢/|3=w@s) |PnllZe@sy)} =b —a by the
b

: 1
Cauchy-Schwarz inequality. Since (3.2) implies that T om )= sup { j m,f%f e
1 n a
b 1 b
W&%(a, b) and f (f'y= 1} and FER) = sup U mf% f e Wi*(a, b) and
b b ‘ b b ! ? b b
[oy=1} [mer=[ mers| m-m)¢* and [ mgi-[ mos

b
j (m,, — m)¢2. Consequently,

1 1
E(_’—n:;- A-l;-(m) = [max {”‘pz”L‘”(a,b)’ ”¢?2”L‘”(a,b)}] . “mn - m“L’(a,b):

and the result is immediate. [

It is also immediate that the weaker result of Lemma 3.4 with L” instead of L!
convergence on {m,} is a corollary to Lemma 3.4. More significantly, we may
now prove the following.

Tueorem 3.5. Let (a,b)=(0,n) and let E be a measurable subset of
(0, ) such that |E|>|(0, ®)\E|, where |.| denotes Lebesgue measure. Then
MO = Xo,m8) < (@/€E] = (0, W)\E])™

Proof. By standard measure theory [41] and Lemma 3.4, it suffices to consider
only the case where E is a finite union of intervals. Therefore, let E =
UR  [azi—1, az], where 0=a, <a,<...<a,z =g Let f be a normalised positive
solution to

—f"= A (xe — X@.mne)XE — X0.me)f in (0, )
f(0)=0=f(x).

Then, for i=1,2,...,R, there are unique A;>0 and 6; so that f(x)=
A;sin (ax — 6;) and f (x) aA;cos (ax — 6,) for all x €la,;_y, ay;] where o=
A (xe — Xeo, :z)\E))2 and ax — 6; € [0 ] for all x € [az;, a5].

Letusnow fixie {1, 2,. — 1} and consider the interval [ay;, y;.41)-1] =
[asi, azi41]- Since fis necessarily continuously differentiable on [0, x], it follows
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that

aa,; — 6;=cot™* (%((%%’2%)
e g1 f'(a2i41)
;41 — U4 = COL (“—‘af(aﬂﬂ))-

Now define g: [a,;, az..1]— R by
_ (')
g(x) =cot <-a—:f—Zx—)>
Then g is continuous on [a,;, ay;..;] and differentiable on (@, @y44). Since
0; = ay — g(ay) and 6,1y = aaz;41 — g(B2i11),
041~ 6; = a(@n41 — a2:) — [8(82:41) — £(a2:)]
=(a—g' (b)) a2+1 — az),
where b; € (a,;, a5:.1) by the Mean Value Theorem. Since f” = o’f on (ay;, 85:41),

e — [ fAb) = [f' ()P
£ 60 =~a{ 6+ [ or )
Hence
o o o -L ' razfz(bi)_[f’(bi)]z]-ll_ e N Al

VreL Ve e la’zfz(bl)-F[f'(b,-)]zj.l\uyﬂ Sy T20Eue1  Saye

As a consequence, -
R-1
O = (2 (61— 9.')) + 6,
i=1

R~-1

<2 2 (aZH.)_ - azl') + aa, (3.8)

i=1
as 0 = aa, — 0,. Since aa,r — O = x, (3.8) implies

R—1

aag =20 D, (@301 — ) — a@y < 7. 3.9)
i=1

Observe that (3.9) may be rewritten
R—1

R
@ Y, By — ) ~ @ 2, (a1~ a3) <.
i=1 1

==

Hence

“[g (a2 —ax-1) — (}2: (@21 —ax)+a+(m— am))] <.

But since |E[=YR,(ax—ax-1) and [0, x)\E|= LR (ape1—ax) +ta+
(7 — azg), the result is established. '
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A remark is now in order. Suppose that E is as in the proof of Theorem 3.5;
ie. E=\UR [an-1,ax], where 0=a,<a,<...<ar=nm Then if o?=
MGe — Xoqe), @ <(mlay—az_,)* fori=1,2,..., R. To see that such is the
case, recall that an eigenfunction restricted to [ay_,, a5;] can be expressed in the
form A, sin(ax — 6;), where ax — 6,[0, 7] for xe[a,_;, ay;]. More generally,
suppose that Q' is a subdomain of Q c R" such that m(x)>0 for x € Q'. Let
f e W5*(Q') be such that [q. |Vf|?>= 1. If we extend f to f € WH*(Q) by

2\ [flx), xeQ,
fex) = {0, x € Q\Q',
- . 1
then [q|Vf|*=fq |Vf|=1. Consequently, j mf?= f mf?=———, and so
"% (%) A (m)

Af(m)=Af(m|Q’). Another remark, of a more specific nature, is that the
analysis in Theorem 3.5 also applies to the case where N=1, Q= (0, &), and
E c (0, m) is measurable with m, |E| > m,|Q\E| where m,, m,€ (0, 1), and we
wish to bound A (myxz — Myxa\g)- The corresponding estimate is

mlnz

(ml |E| -—mZIQ\EI)r

Af(mﬂCE —MyYor) =

Theorem 3.5 and the remarks following the proof of that theorem give upper
bounds for Af(m). The following result gives some lower bounds. Some of the
ideas used in the proof were suggested by A. B. Mingarelli [37] or M. H. Protter.

THEOREM 3.6. Suppose that m € L™(Q), with ||m||l.=1 and m(x) >0 on a set of
positive measure. Let M be any solution of AM =m in Q, and let M; = sup (M),
M, = ess sup (—Mm).

(i) If M,>0, then

Mt (1) + [M3AS (1) + 2MoAT ()] _ 1
2M, M, + M2+ 2My A (L)

(i) If M, =<0, then A (m)ZiM,.

At (m)Z—

Remark 3.7. If M;<0, then M <0 in @, so —m(x)M(x)>0 on a set of
positive measure and hence M,>0. Observe that no boundary conditions are
imposed on M, so we may add any harmonic function to M and our theorem will
still apply. Thus, we can control the sign of M;. Roughly, the size of M; and M,
decreases as m becomes more oscillatory, since in solving AM = m, oscillations in
m tend to be cancelled. This can be seen most readily in the one-dimensional

case, in which M = [* [*m(r) dr ds. We give an example after the proof of the
result.

Proof. Suppose that ¢ is the eigenfunction corresponding to Af(m),
normalised via o |Vo[?=1. Since M € W>#(Q) and ¢ € W>?(Q) N W§P(Q) for
any p via standard elliptic theory, we may use the following version of Green’s
formula, in which the boundary integrals are zero and derivatives are interpreted
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in the appropriate weak sense:

0= f [M(3¢2/3n) — ¢* M /5n]
a2 '
= | M ag?- g7 am]

- f IMp A +2M Vo[> — f me?. (3.10)

Also, we have A¢ + A (m)m¢ =0, so that our normalisation of ¢ implies
1= [|Vo[>=A{(m)[ m¢?; since ¢ € WH*(Q), we have AT (1)f ¢*= [ |Vo[*=1.
Multiplying (3.10) by A{ () and using the above properties of ¢ yields

= 1:(m) [ me? = —205(my?[ Mme? +22:(m)[ M VO  (3.11)
J Jo Jo

If M, is positive, (3.11) implies 1= [(2A] (m)*M,/Af (1)) +2AF(m)M;], so that
2MoAF (m)? + 2My AT (1)AT (m) — AT (1) 20 and Af (m) must be at least as large as
the positive root-of the quadratic 2M,A% + 2M; AT (1)A — A} (1) = 0; calculating that
root gives the estimate (i). If M, =0, then (3.11) yields 1=2Af(m)M,, which
implies (ii).

ExawmpLE 3.8. Suppose that Q = (0, 7) and m = sin nx. Then A{ (1) =1, and we
may choose M = —gin nx/n? Then M, =M,=1/n?% sn A (cinnr)= 2/(1 +11 4
(2n?)}}), and for n =1, A} (sin nx) Zn/(1 +V3). Thus, as n— o, AF(sin nx)—
with order at least n.

We began this section with a theorem which implies, among other things, that
in some situations there is no “worst” environment in a given class. We end the
section by showing that for at least one biologically reasonable set of constraints
on the environment, there is always at least one “best” environment.

THEOREM 3.9. Let M= {m(x) € L™(RQ): — m, = m(x) = m, almost everywhere in
Q, m(x) >0 on a set of positive measure and [o m =mgy}, where mg, m,, and m,
are constants with my and m, positive and —m; |Q| <mo=m, |Q| (so that M is
nonempty). Then there exists a measurable set E ¢ Q such that m=mxg—
myXoe € M, and A () =inf {A(m): m e A}.

Proof. Given ¢ € L¥(Q), let E,(¢) = {x € Q: ¢*(x) > a}. If ¢ #0 outside a set
of measure zero, the restrictions on my, m,, and m, imply that we can choose «
so that

|Ee| my — |Q\E,| my = my. (3.12)

If =0 on a set of positive measure, it may be the case that |Eg| m, — |Q\
Eo| my<my. In that case, choose E, to be any fixed measurable subset of Q with
Eyc E, and |Eg| m; — |Q\Eq| m, =m,. If we can choose « so that (3.12) holds,
define m(¢) = mixg, — myXo\s,. If we cannot so choose «, then define m(¢) =
myxs, — MaXo\s,. In either case, m(¢) € M. Also, we have in the first case, for
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any m e M,

J i) —mio= [ om=mygt+ [ (omamm)g?

o

éaLu(ml—-m)—a/L\E (my+m)

= of pa(#)-m]=o,

since ¢*> & on E, and ¢*= o on Q\E,. In the second case, [ [f(¢) — m]¢*=
JE(my—m)¢*Z0. Thus in either case, we have [ m(p)¢*Z [q me? for all
m € M. Suppose now that m € A is given and that ¢ € W§*(Q) is the eigenfunc-
tion corresponding to A{(m). Then we have [o m¢? >0, and thus [ m(¢p)¢>>0.
Hence,

SalVul®

vewii) [ o m(P)y?
fmy?>0

< JolVoP _JalVeP
~f9 m(¢)¢2- fsz m¢2

It follows that Ay=inf{A{(m): me M} =inf {Af(myxr—myxos): EcQ is
measurable, with m; |E| — m, |Q\E| = mg}. (This infimum is positive, as A{ (m) =
Af(m,) for me M.) To see that the infimum is attained, choose a sequence of
weights m,, € M such that A{(m,) | 4, as n— o, and let ¢, be the eigenfunction
for Af (m,) normalised by sup ¢, =1. Then we have —A¢, = A{ (m,)m,¢, in Q,

¢.=0 on 9Q, with {A{(m,)m,¢,} uniformly bounded in L*(Q). Hence, by
standard elliptic theory, {¢,} is uniformly bounded in W#(Q) N W¥P(Q) for any
p €[1, ®). Since W*?(Q) < C'**(Q) compactly for p sufficiently large, we may
choose a subsequence, which by reindexing we may still call {¢,}, such that as
n—, ¢,— ¢, in C'**(Q) for some ¢..e C***(Q). Since the convergence is in
C**(Q), we have ¢,=0 on 8Q and sup ¢-.=1, so that ¢.¥#0. Also,

C Q) > W'(Q), so we have lim [q|V¢, = [q|V¢.% and [q|Vé.[>#0

since g2 0. Let 9, = $,/(Ja [V} and o= ¢/ (o [V$./)% Then y,— .
in C**¥%(Q), and [q |V, > = [ [V¥.[*=1. Hence [qm,92=1/A{(m,). Recall
that in general, if ¥ € W§*(Q) with [ |Vy[>=1 then [ myp?=1/Af(m). We can
now construct the weight for which the infimum in the class /£ is attained. Our
choice is m =rm(vy.), which by our construction is a function of the form
myXg — myXox and belongs to . To see that AT ((y.))=2A,, observe that
1/ Z1/Af (R(Y)) Z fo m(Po) P2 2 [q m, 2 for any n. Thus

A (m(e)) =

= A (m). (3.13)

UAZEURNE | k= [ myi+ [ m@i-vd 619

As n—o, [om,pl=1/Af(m,)—1/A; by our choice of {m,}, and since
[m,| =my + m, for all n and ¥, — Y. in C***(Q), we may take the limit as n—>
in (3.14) to obtain 1/AZ1/A{ (M (Y=)) =1/, so Ag=inf{Af(m):me M} =
A{ ((y=.)) as desired.
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Remark 3.10. If we view m(x) as a control on A{ (m) and we consider a control
that minimises A{(m) to be optimal, then Theorem 3.9 says that an optimal
control exists, and is “bang-bang”.

The proof of Theorem 3.9 is based on the idea of looking at rearrangements of
the weight m. Combining this idea with Schwarz symmetrisation, it is fairly easy
to see that if we specify |Q| rather than Q, but impose the same conditions on m
as in the theorem, the lowest value of Af(m) occurs when Q is a ball and
m=mxg —MXox, Where EcQ is also a ball, concentric with Q, with radius
such that m, |E| — m, |Q\E|=m,. This fact was pointed out to us by H. F.
Weinberger [46].

4. Solution estimates

The analysis in Section 2 shows that (1.1) has a positive steady state if and only
if d <1/Af(m). We now consider how the size of the steady state depends on d
and m, and how the steady state behaves as d | 0. At the end of the section we
briefly discuss the rate of decrease of solutions to (1.1) as t— = if d >1/A{ (m).

Our first result gives a bound for ||u|l; = fq u, which represents the total
population being modelled.

TueoreM 4.1. Suppose that m € L™(R2) with m(x)> 0 on a set of positive
measure, and that 0<d <1/A{(m). If u is the positive solution to

—dAu=m(x)u—u* inQ, ] (41
u=u on o8, ) S
then

llulls = [1~ dAf (m)] lIm.cis 1215 (4.2)

Proof. Since u is a weak solution of (4.1) in W§*(Q), we have 0<dfq |Vul*+
fou?=[omu®. Thus, by [35], Af(m)fqmu*= [o|Vul’. Using Holder’s ine-
quality and noting that [omu®= [om.u?, we have 0<|u|i=[ou’=[1~
dAf (m)]fo mu = [1— dAT (m)] |lm.|ls 1?3 so that |lulls=[1—dA{(m)] [|m..ls,
since l]uzlli = ||u||3. Since Hoélder’s inequality also implies [ju[l;= ||uls 1QI%, we
have (4.2).

Remark 4.2. The bound on u implied by (4.2) decreases as d increases or
Af(m) increases.

We now consider the question of how solutions to (4.1) behave as d | 0. That is
a singular perturbation problem, and we shall utilise some results from that
theory, as developed by DeSanti [14]. For this discussion, we follow the usual
convention and write d = £2. We shall also use the method of upper and lower
solutions. Our approach is to obtain global upper and lower solutions by patching
together local upper and lower solutions constructed to satisfy the results of [14],
then to compare u with those global upper and lower solutions. For the
comparison, we need the following.

LemMMA 4.3. Suppose that u, i € WH(Q) N C(Q) satisfy (in the weak sense)
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u=iinQ, and

~e*Aus=m(x)u—u® in Q, }

u=0 on 8Q, (4.3)
—AaZmx)a—a* in Q, }

=0 on 9Q. (4.4)

Then (4.1) has a solution u satisfying u=u=1i. By the uniqueness results of
Section 2, if u=0, u#0, then the positive solution of (4.1) satisfies u=Su=1u.

Discussion 4.4. Lemma 4.3 follows from the maximum principle for weak
elliptic differential inequalities in W"*(Q) ([20, Theorems 8.1 and 8.19]) and a
rather standard monotone iteration argument (e.g. [2, Theorem 6.1]). Since these
ideas are well known, we omit the details of the proof. Some related ideas or
results are used in [7,11, 14]. ([14, Theorem 2.2] is close to our Lemma 4.3 but
requires slightly more regularity than is available to us.)

To patch together local upper and lower solutions, we need the following
lemma, due to Berestycki and Lions ([5, Lemma 1.1]).

Lemma 4.5, Suppose that Q, is a subdomain of Q with 3Q, of class C*** such
that Q,c Q. Let v denote the outward normal to , and let Q,=Q\Q,. If
v, e WPX(Q,), —&*Av;=f, on Q; with f,e L(Q,) for i=1,2, with v,=v, and .

5 ,
%é-;f on 3Q,, then the function v=v,(x) for x € Q; belongs to W**(Q) and
satisfies —&* Av = f in the weak sense on Q, where f = f(x) for x € Q;. Similarly, if

2] d
w; € W»X(Q,) with —e* Aw; Zf, on Q; for i=1, 2 and w, = w;, > M2 on 3Q,,

dv  dv
then w = wy(x) for x € Q; satisfies —e* Aw Zf in the weak sense.

To analyse our local upper and lower solutions we use a result of De Santi ([14,
Theorem 3.1]) (In [14], the result is formulated in R?, but it is noted that it
extends to R". Also, the equations in [14] are always written e* Au=. . ., so the
notation differs from ours by a minus sign.)

Lemma 4.6. Consider the problem

-2 Aw=k(x,w) inQ, }

w=f(x) on 32, (4.5)

where Q c R" is a bounded domain with 3Q given by F(x) =0 where F € C}(R")
and VF#0 on 98Q, and where k(x,w)e C}(QXR), f(x)eC*3Q). Let
K(x, w) = [¥ k(x, s) ds and suppose that there exists g(x) € C*(Q) such that

(i) k(x, g(x))=0in Q,

(ii) k,(x, g(x)) = —ko <0 in Q for some positive constant k,, and

(i) [KCx, )~ KGx, gD ()~ g <0 for all we(g(x), f(x)] or
[f(x), g(x)) and all x € 3.

Then for ¢ sufficiently small, (4.5) has a classical solution w =w(x, €) such that
w(x, €)— g(x) as € | 0, uniformly on each closed subset of Q.
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We next must apply Lemma 4.6 to some special cases. First, consider

—e2 Aw=—myw in Q, }

4.
w=m;y on 0Q, ( 6)‘

where my, m;>0. In the notation of Lemma 4.6, we have k= —mqow, g =0,
f=m,, and K = —myw?/2, and the hypotheses of the lemma are satisfied. Also,
(4.6) may be written as —g*Aw +megw =0 in Q, w=m,>0 on 8Q, so the
maximum principle implies 0 <w <m,; on @ and w has positive outward normal
derivative on Q. By Lemma 4.6, we have w—> 0 uniformly on any closed subset
of Q as € | 0, so w shows “boundary layer behaviour” as ¢ | 0. Next, consider

—2 Aw =mow —w? in Q, }
w=0 on 29,

where my > 0. If mo/€* > Af (1) then the results of Section 2 imply that (4.7) has a
unique positive solution. In fact, a monotone iteration argument using lower
solution ¥ =.8¢; with 6 >0 small and ¢, > 0 the eigenfunction for A¢ = A (1)¢
in €2, and upper solution i = constant > m, shows that the positive solution is the
maximal solution, and the maximum principle implies that no solution can be
larger than m,. Hence, if (4.7) possesses any solution w such that w—>m, on
arbitrary closed subsets of 2, then the positive solution must also approach my,
necessarily from below. Examining (4.7), we see that if we want to have w— m,
we must choose f =0, g = my; but then, hypothesis (iii) of Lemma 4.6 fails. To
overcome that problem, we set z = mq— w. Then z satisfies

@.7)

—& Nz =—~mgz +2z° 1\, } @.8)

zZ=my on 39.

Now, choosing f =my, g =0, the hypotheses of Lemma 4.6 are satisfied, and
(4.8) thus has a solution with z— 0 on closed subsets of Q as £ [ 0.

We have now collected enough results to analyse an important special case of
(4.1), namely that where m(x) = xr — xour for some subset E ¢ Q.

TueoreM 4.7. Suppose that 3Q is of class C*** and that m(x) = xg — Yow
where E is a finite union of open sets with E = Q and 3E of class C**% If u,
denotes the positive solution to (4.1) for a given value of €, then on any closed
subset of E, u.—> 1 uniformly as €] 0, while on any closed subset of Q\E, u,—0
uniformly as € | 0. Hence u, develops interior layers at SE.

Proof. It follows from the results of Section 2 (and is well known; see [8, 10])
that for &> 0 sufficiently small, there is a unique positive solution of —£*Av, =
v, —v2on E, v, =0 on 8E, which is the maximal solution. By Lemma 4.6, v,— 1
uniformly on closed subsets of E as £—0. Letting Q;=E, v,=v,, and v,=0,
we see that the hypotheses of Lemma 4.5 are satisfied with f; = m(x)v; — v7 since
m=1 on E. Thus, taking y, =v, on E, u, =0 on Q\E, we obtain a weak lower
solution to (4.1) in the sense of (4.3). By the maximum principle, ., =v, <1 on
E. To construct an upper solution, we may first solve —&* Aw, = —w, on Q\E,
w: =1 on 3(Q\E). The strong maximum principle implies that 0 <w, <1 on Q\E
and that, moreover, if v is an inner normal to Q\E, 8w,/dv <0. Since m(x) = —1
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on Q\E, —e2 Aw, Zm(x)w, — w2 on Q\E. Let w;=1 on E and w,=w, on Q\E.
The hypotheses of Lemma 4.5 hold, and consequently i, =1 on E and &, = w, is
a weak supersolution to (4.1) in the sense of (4.4). Finally, &, = w,— 0 uniformly
on closed subsets of Q\E as £¢— 0 by Lemma 4.6.

Since v, <1 on E and w, >0 on Q\E, we have 0=y, <ii.. Applying Lemma
4.3 and the uniqueness of the positive solution of (4.1), we see that y, Su =4,
for £ small, and the desired properties of u follow from those of u, and ..

Let us suppose now that m is not the difference of two characteristic functions,
but there exist sets E;, E, satisfying the conditions of Theorem 4.7 with
1Zm(x)Zm;>0o0n E; and —1 =m(x) = —m, <0 on E,, and with m e C}(E, U
E,). We aim to use the methods employed in the proof of Theorem 4.7 to
conclude that the steady state solutions u, to (1.1) converge uniformly to m(x) on
closed subsets of E; and to 0 on closed subsets of E, as ¢—0. Showing the
uniform convergence to 0 on E, is relatively straightforward. Let u, on E; be the
unique positive solution to —&®Au, =mu, —uZ on E;, u,=0 on 8E,, with
u. =0 on Q\Ey; also, let i, satisfy —&* Ail, = mii, on E, with Z, =1 on Q\E,.
Then 0=y, =#,, u. #0, and by Lemma 4.5 u, and @, are (weak) lower and
upper solutions to (4.1), respectively. Lemmas 4.3 and 4.6 are applicable, and we
may conclude that u,— 0 uniformly on closed subsets of E, as ¢— 0. However,
on E,, we may conclude only that if E’ is a closed subset of E; and o >0 is given,
then u.(x) >m; — a for all x € E’ and 0 < ¢ < g, for a sufficiently small &,.

In order to draw the stronger conclusion that u,(x)—> m(x) uniformly on closed
subsets of E,, we prove the following result. The conclusion then follows from a
simple compactness argument.

TureorEM 4.8. Let xg€ E, and let « >0 be given. Then there is an open ball

B, (xo) about xy and an &,,>0 so that ju.(x) —m(x)| < « for all x € B,(x,) and
e€ (0, &) ‘

Proof. Let m, =m(x,) — «/4 and m,=m(x,)+ «/4. We will assume that
0<m, and m, <1. If m(xy) =1, a slight modification in the argument is all that
is necessary. Then there is a subdomain 0, < E, with x, € 0,, 30, sufficiently
smooth and m, = m(x) =m, for all x € 0.

Consider the problem ,

e Aw=k,(w) on0,, } .9)

w=1 on 80,,

where k,(w) = m,w —w? for w Zm, /2, k,(w)>0 for w <m,/2 and k, € C*(R).
Then by the maximum principle any solution to (4.9) satisfies i, =w =1 on 0,
since k,(w) >0 for w <, and k,(w) <0 for w > 1. Moreover, since i, Ew =1
implies that —&’Aw =0, the strong maximum principle implies that 8w/dn >0
on 30, since w 1.

We find that k(i) =0, k,(f,) = —m, <0, and that if K, (w)= [§ k,(s) ds,
K (w) =k, (w)<0 for we(m,,1]. Consequently, K, (w)—K,(,)<0 if we
(M, 1] and Lemma 4.6 is applicable with f =1 and g = m,. Hence there exist
classical solutions w, to (4.9) with i, =w, =1 on 0,, dw./31n>0o0n 30,, and w,
converging uniformly to 7, on closed subsets of 0,. Letting &, = w, on 0, and 1
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on Q\0O,, —&? Aii, = r,w — w>*Zm(x)w — w? on 0,. Hence Lemma 4.5 implies
that 7, is an upper solution for (4.1).
If we solve

~2Av=m,v—v> on0,,
v=0 on 00,
v>0 in 0,

as in (4.7), then there is a solution v, which converges uniformly to m, on closed
subsets of @0, as é— 0. Recalling that dv./3n <0 on 80, and 0< v, <m,, we
have that u, = v, on 0, and u, =0 on Q\0, is a lower solution to (4.1) by Lemma
4.5 and that u, S m, <m, =i,. We may now choose B, (x;) to be any closed ball
about x, properly contained in 0,. There is an &,,>0 so that u.(x)>m, — a/4
and i@ (x)<m,+ a/4 for all xeB,(x,) and £¢€(0, &,). Consequently,

m, — a/4<u,(x)<m, + «/4 for x € B,(x,) and 0< & < g,,. Since i, + («/4) —
fm — fv/A.\ = g, the theorem ig establiched,

L LaEw A s

If 8E1 n aEzaEO then u, forms a layer at 8E, N 3E, as £ 0. If the regions
where m is positive are separated from those where m is negative by an open set
where m is zero, no layers can be expected. In the one-dimensional case, u must
be linear where m is zero, and so for m = xg, — xg, and ¢ small, we will have u
near zero on E,, near one on E,, and near line segments interpolating between
zero and one on Q\(E, U E,).

So far we have only estimated the size of steady states to (1.1) when
d< 1/A+(m) Ifd> 1/A+(m) then solutions to (1.1) tend to zero as t—> «. We can

¥ o |
DDlullal\l m\l .I.ﬂ.L\f Ul. u\ava’y GD LUuUWD

THEOREM 4.9. Suppose that u satisfies

=dAu+mu—u* on QX (0, x),
u=0 on 3Q X (0, »), (4.10)
u=uy=0 on QX{O}:

with m € L™(Q) and m >0 on a set of positive measure. If d > 1/1; (m), then
[ e, dx =K expli-d + W/t emRT O} (4.11)
Q

where K depends only on uy and Q.
Proof. Let E(t) =4[q u®(x, £) dx. Then

E'(t)=Luu,dx=dLuAudx+J‘Qmuzdx --Lu%lx
<[~d + 1/ (m))] L Va2 dx — L W3 dx

S[-d+ WA O u?dx- 10174 [ v "")3’
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so we have
E'(1)y=2[~d + (/A (m)]AF (DE() — 23 |Q|2E5(r)
=2[-d + (1/AF (m)]AT(DE(). (4.12)
Thus, E(@)= exg{Z[-—d + /AT (M)A (A}EQ) and  since  [qudx =
IQIE(f o u? dx)z = 22 |QEEL(f), (4.11) follows.
- Remark 4.10. The estimate (4.12) may actually give faster decay for u than is

implied by (4.11), at least when u is large; however, the last term in (4.12)
becomes negligible when u is close to zero.

Acknowledgment

The second co-author wishes to thank T. G. Hallam and L. Gross for many
useful conversations about ecological modelling during visits to the University of
Tennessee. He also wishes to thank A. C. Lazer, A. B. Mingarelli, M. H.
Protter, and H. F. Weinberger for suggestions about eigenvalue estimation.

References

—

J. C. Alexander and S. S. Antman. Global behavior of solutions of nonlinear equations

depending on infinite-dimensional parameters. Indiana Univ. Math. J. 32 (1983), 39-62.

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces.

SIAM Rev. 18 (1976), 620-709.

D. G. Aronson, D. Ludwig and H. F. Weinberger. Spatial patterning of the spruce budworm. J.

Math. Biol. 8 (1979), 217-258.

A. Beltramo and P. Hess. On the principal eigenvalue of a periodic-parabolic operator. Comm.

Partial Differential Equations 9 (1984), 919-941.

H. Berestycki and P. L. Lions. Some Applications of the Method of Super and Subsolutions.

Springer Lecture Notes in Mathematics 782, pp. 16-41 (Berlin: Springer-Verlag, 1980).

K. J. Brown and C. C. Lin. On the existence of positive eigenfunctions for an eigenvalue

problem with indefinite weight-function. J. Math. Anal. Appl. 75 (1980), 112-120.

R. S. Cantrell and C. Cosner. On the positone problem for elliptic systems. Indiana Univ. Math.

J. 34 (1985), 517-532.

R. S. Cantrell and C. Cosner. On the steady-state problem for the Volterra—Lotka competition

model with diffusion. Houston J. Math 13 (1987), 337-352.

R. 8. Cantrell and K. Schmitt. On the eigenvalue problem for coupled elliptic systems. SIAM J.

Math. Anal. 17 (1986), 850-862.

10 C. Cosner and A. C. Lazer. Stable coexistence states in the Volterra~Lotka competition model
with diffusion. SIAM J. Appl. Math. 44 (1984), 1112-1132.

11 C. Cosner and F. Schindler. Upper and lower solutions for systems of second order equations
with nonnegative characteristic form and discontinuous coefficients. Rocky Mountain J. Math. 14
(1984), 549-557.

12 M. Crandall and P. H. Rabinowitz. Bifurcation from simple eigenvalues. J. Funct. Anal. 8
(1971), 321-340.

13 D. G. deFigueiredo. Positive Solutions of Semilinear Elliptic Problems. Springer Lecture Notes in
Mathematics 957, pp. 3488 (Berlin, Springer-Verlag, 1982).

14 A.J. DeSanti. Boundary and interior layer behavior of solutions of some singularly perturbed
semilinear elliptic boundary value problems. J. Math. Pures Appl. 65 (1986), 227-262.

15 P. Fife. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathemat-
ics 28 (Berlin: Springer-Verlag, 1979).

16 I. Fleckinger and M. L. Lapidus. Eigenvalues of elliptic boundary value problems with an
indefinite weight function. Trans. Amer. Math. Soc. 295 (1986), 305-324.

17 J. Fleckinger and A. B. Mingarelli. On the eigenvalues of non-definite elliptic operators.
In Differential Equations, ed. 1. W. Knowles & R. T. Lewis, pp. 219-227. (Amsterdam: Elsevier,
1984).

18 W. H. Fleming. A selection-migration model in population genetics. J. Math. Biol. 2 (1975),
219-233.

E S ¥ A >

L'~ - T T - |



318
19

20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

37
38

39
40

41
42

43
44

45
46

Robert Stephen Cantrell and Chris Cosner

O. H. Frankel and M. E. Soulé. Conservation and Evolution (Cambridge: Cambridge University
Press, 1981).

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order (Berlin:
Springer-Verlag, 1977).

J. P. Gossez and E. LamiDozo. On the principal eigenvalue of second order elliptic problem
Arch. Rational Mech. Anal. 89 (1985), 169-175.

T. G. Hallam. Population dynamics in a homogeneous environment. In Mathematical Ecology,
eds T. G. Hallam and S. Levin. Biomathematics 17 (Berlin: Spnnger—Verlag, 1986).

T. G. Hallam and C. E. Clark. Nonautonomous logistic equations as models of populations in a
deteriorating environment. J. Theoret. Biol. 93 (1981), 303-311.

T. G. Hallam, C. E. Clark and R. R. Lassiter. Effects of toxicants on populations: a qualitative
approach I. Equilibrium environmental exposure. Ecological Modelling 18 (1983), 291-304.

T. G. Hallam, C. E. Clark and S. Jordan, Effects of toxicants on populations: a qualitative
approach II. First order kinetics. J. Math. Biol. 18 (1983), 25-37.

T. G. Hallam and J. T. de Luna. Effects of toxicants on populations: a qualitative approach III.
Environmental and food chain pathways. J. Theoret. Biol. 109 (1984), 411-429.

T. G. Hallam and Ma Zhien. On density and extinction in continuous population models.
J. Math. Biol. 25 (1987), 191-201.

T. G. Hallam and Ma Zhien. Persistence in population models with demographic fluctuations.
J. Math. Biol. 24 (1986), 327-339.

D. Henry. Geometric Theory of Semilinear Parabolic Equations Lecture Notes in Mathematics
840 (Berlin; Springer-Verlag, 1981).

P. Hess. On the eigenvalue problem for weakly coupled elhptnc systems. Arch. Rational Mech.
Anal. 81 (1983), 151-159.

P. Hess. On bifurcation and stability of positive solutions of nonlinear elliptic eigenvalue
problems. In Dynamical Systems II., ed. A. R. Bednarek & L. Cesari, pp. 103-119 (New York:
Academic Press, 1982).

P. Hess and T. Kato. On some linear and nonlinear eigenvalue problems with an mdeﬁmte
weight function. Comm. Partial Differential Equations 5 (1980), 999-1030.

A. C. Lazer. Personal communication.

S. Levin. Population models and community structure in heterogeneous environments. In
Mathematical Ecology, eds T. G. Hallam and S. Levin. Biomathematics 17 (Berlin: Springer-
‘/Arlqn 109‘\

R. H. MacArthur and E. O. Wilson. The Theory of Island Biogeography. (Princeton: Princeton
University Press, 1967).

A. Manes and A.-M. Micheletti. Un’estensione della teoria variazionale classica degli antovalori
per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 7 (1973), 285-301.

A. B. Mingarelli. Personal communication.

W. D. Newmark. Species-area relationship and its determinants for mammals in western North
Anmerican national parks. Biol. J. Linnean Soc. 28 (1986), 83-98.

R. D. Nussbaum. Posmve operators and elliptic eigenvalue problems. Math. Z. 186 (1984),
247-264.

P. H. Rabinowitz. Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7
(1971), 487-513.

W. Rudin. Real and Complex Analysis (New York: McGraw-Hill, 1987).

J. C. Saut and B. Scheurer. Remarks on a non-linear equation arising in population genetics.
Comm. Partial Differential Equations 3 (1978), 907-931.

J. Smoller. Shock Waves and Reaction-Diffusion Equations (Berlin: Springer-Verlag, 1983).

P. E. Verhulst. Notice sur la loi que la population suit dans sou accroissment. Correspondences
Math. Phys. 10 (1838), 113-121.

P. F. Verhulst. Deuxieme mémoire sur la loi d’accroissement de la population. Mem. Acad. Roy.
Belg. 20 (1847), 1-32.

H. F. Weinberger. Personal communication.

(Issued 12 September 1989)



